Example based super resolution land cover mapping using support vector regression

Por: Yihang, Zhang ... [et al.].
Colaborador(es): Yun, Du | Feng, Ling | Shiming, Fang | Xiaodong, Li.
Tipo de material: materialTypeLabelArtículoTema(s): Satélites artificiales en detección a distancia | Satélites geodésicos | Prospección geofísica | Reconocimientos topográficos | Procesamiento óptico de datos | Reconocimiento de modelos bosques, suelos, edificios, plantaciones, etc | Sistemas de imágenes | Procesamiento de imágenes | Análisis espectral | Espectrómetros 1 | Fotogrametría 1 | Cartografía 1 | Percepcion de formas 1 | Percepcion de estructuras En: Journal of selected topics in applied earth observations and remote sensing Vol. 7, núm. 4 (April, 2014), pp. 1271-1283Resumen: Super resolution mapping (SRM) is a promising technique to generate a fine resolution land cover map from coarse fractional images by predicting the spatial locations of different land cover classes at subpixel scale. In most cases, SRM is accomplished by using the spatial dependence principle, which is a simple method to describe the spatial patterns of different land cover classes. However, the spatial dependence principle used in existing SRM models does not fully reflect the real world situations, making the resultant fine resolution land cover map often have uncertainty
Tipo de ítem Biblioteca de origen Colección Signatura Vol info Copia número Estado Fecha de vencimiento Código de barras Reserva de ejemplares
Revista Revista Campus II
Hemeroteca PP-2 550 I592j (Navegar estantería) Vol. 7, núm. 4 (April, 2014) Ej. 1 Disponible R0141542
Reservas Totales: 0

CAMPUS II

Super resolution mapping (SRM) is a promising technique to generate a fine resolution land cover map from coarse fractional images by predicting the spatial locations of different land cover classes at subpixel scale. In most cases, SRM is accomplished by using the spatial dependence principle, which is a simple method to describe the spatial patterns of different land cover classes. However, the spatial dependence principle used in existing SRM models does not fully reflect the real world situations, making the resultant fine resolution land cover map often have uncertainty