A generic land cover classification framework for polarimetric SAR images using the optimum Touzi decomposition parameter subset -- an insight on mutual information based feature selection techniques

Por: Banerjee, Biplab.
Colaborador(es): Bhattacharya, Avik | Buddhiraja, Krishna M.
Tipo de material: materialTypeLabelArtículoTema(s): Satélites artificiales en detección a distancia | Satélites artificiales en meteorología | Procesamiento óptico de datos | Interferometria | Sistemas de imágenes | Procesamiento de imágenes En: Vol. 7, núm. 4 April, 2014, pp. 1167-1176 Journal of selected topics in applied earth observations and remote sensing R0141542Resumen: This correspondence proposes a generic framework for land cover classification using support vector machine (SVM) classifier for polarimetric synthetic apertures radar (SAR) images considering the optimum Touzi decomposition parametric. Some new concerns have been raised recently with the Cloude-Pottier decomposition. Cloude's scattering type ambiguities may take place for certain scatterers, and some of the Cloude-Pottier's parameters may not be roll-invariant for asymmetric targets
Tipo de ítem Biblioteca de origen Colección Signatura Vol info Copia número Estado Fecha de vencimiento Código de barras Reserva de ejemplares
Revista Revista Campus II
Hemeroteca PP-2 550 I592j (Navegar estantería) Vol. 7, núm. 4 (April, 2014) Ej. 1 Disponible R0141542
Reservas Totales: 0

CAMPUS II

This correspondence proposes a generic framework for land cover classification using support vector machine (SVM) classifier for polarimetric synthetic apertures radar (SAR) images considering the optimum Touzi decomposition parametric. Some new concerns have been raised recently with the Cloude-Pottier decomposition. Cloude's scattering type ambiguities may take place for certain scatterers, and some of the Cloude-Pottier's parameters may not be roll-invariant for asymmetric targets